太阳2Hive的Transform和UDF

原标题:MaxCompute重装上阵 第五弹 – SELECT TRANSFOR

UDTF

  • Hive中UDTF编写和使用

2017/12/20 北京云栖大会上阿里云MaxCompute发布了最新的功能Python
UDF,万众期待的功能终于支持啦,我怎么能不一试为快,今天就分享如何通过Studio进行Python
udf开发。

摘要:
MaxCompute(原ODPS)是阿里云自主研发的具有业界领先水平的分布式大数据处理平台,
尤其在集团内部得到广泛应用,支撑了多个BU的核心业务。
MaxCompute除了持续优化性能外,也致力于提升SQL语言的用户体验和表达能力,提高广大ODPS开发者的生产力。

UDAF

  • Hive
    udaf开发入门和运行过程详解
  • Hive通用型自定义聚合函数(UDAF)

 

MaxCompute(原ODPS)是阿里云自主研发的具有业界领先水平的分布式大数据处理平台,
尤其在集团内部得到广泛应用,支撑了多个BU的核心业务。
MaxCompute除了持续优化性能外,也致力于提升SQL语言的用户体验和表达能力,提高广大ODPS开发者的生产力。

Hive中的TRANSFORM:使用脚本完成Map/Reduce

转自:
http://www.coder4.com/archives/4052

首先来看一下数据:

hive> select * from test;
OK
1       3
2       2
3       1

假设,我们要输出每一列的md5值。在目前的hive中是没有这个udf的。

我们看一下Python的代码:

#!/home/tops/bin/python

import sys
import hashlib

for line in sys.stdin:
    line = line.strip()
    arr = line.split()
    md5_arr = []
    for a in arr:
        md5_arr.append(hashlib.md5(a).hexdigest())
    print "t".join(md5_arr)

在Hive中,使用脚本,首先要将他们加入:

add file /xxxx/test.py

然后,在调用时,使用TRANSFORM语法。

SELECT 
    TRANSFORM (col1, col2) 
    USING './test.py' 
    AS (new1, new2) 
FORM 
    test;

这里,我们使用了AS,指定输出的若干个列,分别对应到哪个列名。如果省略这句,则Hive会将第1个tab前的结果作为key,后面其余作为value。

这里有一个小坑:有时候,我们结合INSERT
OVERWRITE使用上述TRANSFORM,而目标表,其分割副可能不是t。但是请牢记:TRANSFORM的分割符号,传入、传出脚本的,永远是t。不要考虑外面其他的分割符号!

最后,解释一下MAP、REDUCE。

在有的Hive语句中,大家可能会看到SELECT MAP (…) USING ‘xx.py’这样的语法。

然而,在Hive中,MAP、REDUCE只不过是TRANSFORM的别名,Hive不保证一定会在map/reduce中调用脚本。看看官方文档是怎么说的:

Formally, MAP ... and REDUCE ... are syntactic transformations of SELECT TRANSFORM ( ... ). In other words, they serve as comments or notes to the reader of the query. BEWARE: Use of these keywords may be dangerous as (e.g.) typing "REDUCE" does not force a reduce phase to occur and typing "MAP" does not force a new map phase!

所以、混用map
reduce语法关键字,甚至会引起混淆,所以建议大家还是都用TRANSFORM吧。

友情提示:如果脚本不是Python,而是awk、sed等系统内置命令,可以直接使用,而不用add
file。

如果表中有MAP,ARRAY等复杂类型,怎么用TRANSFORM生成?

例如:

CREATE TABLE features
(
    id BIGINT,
    norm_features MAP<STRING, FLOAT> 
);

答案是,要在脚本的输出中,对特殊字段按照HDFS文件中的格式输出即可。

例如,以上面的表结构为例,每行输出应为:

1^Ifeature1^C1.0^Bfeature2^C2.0

其中I是tab键,这是TRANSFORM要求的分割符号。B和^C是Hive存储时MAP类型的KV分割符。

另外,在Hive的TRANSFORM语句的时候,要注意AS中加上类型声明:

SELECT TRANSFORM(stuff)
USING 'script'
AS (thing1 INT, thing2 MAP<STRING, FLOAT>)

前置条件

MaxCompute基于ODPS2.0新一代的SQL引擎,显著提升了SQL语言编译过程的易用性与语言的表达能力。我们在此推出MaxCompute(ODPS2.0)重装上阵系列文章

Hive中的TRANSFORM:自定义Mapper和Reducer完成Map/Reduce

/**
 * Mapper.
 */
public interface Mapper {
  /**
   * Maps a single row into an intermediate rows.
   * 
   * @param record
   *          input record
   * @param output
   *          collect mapped rows.
   * @throws Exception
   *           on error
   */
  void map(String[] record, Output output) throws Exception;
}

可以将一列拆分为多列

使用样例:

public class ExecuteMap {

    private static final String FULL_PATH_CLASS = "com.***.dpop.ods.mr.impl.";

    private static final Map<String, Mapper> mappers = new HashMap<String, Mapper>();

    public static void main(String[] args) throws Exception {
        if (args.length < 1) {
            throw new Exception("Process class must be given");
        }

        new GenericMR().map(System.in, System.out,
                getMapper(args[0], Arrays.copyOfRange(args, 1, args.length)));
    }

    private static Mapper getMapper(String parserClass, String[] args)
            throws ClassNotFoundException {
        if (mappers.containsKey(parserClass)) {
            return mappers.get(parserClass);
        }

        Class[] classes = new Class[args.length];
        for (int i = 0; i < classes.length; ++i) {
            classes[i] = String.class;
        }
        try {
            Mapper mapper = (Mapper) Class.forName(FULL_PATH_CLASS + parserClass).getConstructor(classes).newInstance(args);
            mappers.put(parserClass, mapper);
            return mapper;
        } catch (ClassNotFoundException e) {
            throw new ClassNotFoundException("Unknown MapperClass:" + parserClass, e);
        } catch (Exception e) {
            throw new  ClassNotFoundException("Error Constructing processor", e);
        }

    }
}

MR_USING=" USING 'java -Xmx512m -Xms512m -cp ods-mr-1.0.jar:hive-contrib-2.3.33.jar com.***.dpop.ods.mr.api.ExecuteMap "

COMMAND="FROM dw_rtb.event_fact_adx_auction "
COMMAND="${COMMAND} INSERT overwrite TABLE dw_rtb.event_fact_mid_adx_auction_ad PARTITION(yymmdd=${CURRENT_DATE}) SELECT transform(search_id, print_time, pthread_id, ad_s) ${MR_USING} EventFactMidAdxAuctionAdMapper' as search_id, print_time, pthread_id, ad_s, ssp_id WHERE $INSERT_PARTITION and original = 'exinternal' "

 

第一弹 – 善用MaxCompute编译器的错误和警告

Hive Python Streaming的原理及写法

http://www.tuicool.com/articles/vmumUjA

了解到,虽然功能发布,不过还在公测阶段,如果想要使用,还得申请开通:。这里我就不介绍申请开通具体流程了。

第二弹 – 新的基本数据类型与内建函数

环境准备

MaxCompute Studio支持Python UDF开发,前提需要安装python,
pyodps和idea的python插件。

  1. 安装Python:可以Google或者百度搜索下如何安装。
  2. 安装pyodps:可以参考python
    sdk文档的安装步骤。即,在
    Python 2.6 以上(包括 Python 3),系统安装 pip 后,只需运行下 pip
    install pyodps,PyODPS 的相关依赖便会自动安装。
  3. Intellij IDEA中安装Python插件。搜索Python Community
    Edition插件并安装
  4. 太阳2 1
  5. 配置studio module对python的依赖。

  6.  

    • File -> Project structure,添加python sdk:
    • 太阳2 2
    • File -> Project structure,添加python facets:
      太阳2 3
    • File -> Project structure,配置module依赖python facets:
      太阳2 4

第三弹 – 复杂类型

开发Python UDF

环境都准备好后,既可在对应依赖的module里创建进行python udf开发。

第四弹 – CTE,VALUES,SEMIJOIN

新建python脚本。

右键 new | MaxCompute Python,弹框里输入脚本名称,选择类型为python udf:

太阳2 5

生成的模板已自动填充框架代码,只需要编写UDF的入参出参,以及函数逻辑:
太阳2 6

上次向您介绍了CTE,VALUES,SEMIJOIN,本篇向您介绍MaxCompute对其他脚本语言的支持

本地调试

代码开发好后,可以在Studio中进行本地调试。Studio支持下载表的部分sample数据到本地运行,进行debug,步骤如下:

  1. 右键python udf类,点击”运行”菜单,弹出run
    configuration对话框。UDF|UDAF|UDTF一般作用于select子句中表的某些列,此处需配置MaxCompute
    project,table和column(元数据来源于project
    explorer窗口和warehouse下的example项目):
    太阳2 7
  2. 点击OK后,通过tunnel自动下载指定表的sample数据到本地warehouse目录(若之前已下载过,则不会再次重复下载,否则利用tunnel服务下载数据。默认下载100条,如需更多数据测试,可自行使用console的tunnel命令或者studio的表下载功能)。下载完成后,可以在warehouse目录看到下载的sample数据。这里用户也可以使用warehouse里的数据进行调试,具体可参考java
    udf开发中的关于本地运行的warehouse目录”部分)。
  3. 太阳2 8
  4. 然后本地运行框架会根据指定的列,获取data文件里指定列的数据,调用UDF本地运行。
    太阳2 9
  • SELECT TRANSFORM。

  • 场景1

  • 我的系统要迁移到MaxCompute平台上,系统中原来有很多功能是使用脚本来完成的,包括python,shell,ruby等脚本。
    要迁移到MaxCompute上,我需要把这些脚本全部都改造成UDF/UDAF/UDTF。改造过程不仅需要耗费时间人力,还需要做一遍又一遍的测试,从而保证改造成的udf和原来的脚本在逻辑上是等价的。我希望能有更简单的迁移方式。
  • 场景2
  • SQL比较擅长的是集合操作,而我需要做的事情要对一条数据做更多的精细的计算,现有的内置函数不能方便的实现我想要的功能,而UDF的框架不够灵活,并且Java/Python我都不太熟悉。相比之下我更擅长写脚本。我就希望能够写一个脚本,数据全都输入到我的脚本里来,我自己来做各种计算,然后把结果输出。而MaxCompute平台就负责帮我把数据做好切分,让我的脚本能够分布式执行,负责数据的输入表和输出表的管理,负责JOIN,UNION等关系操作就好了。

注册发布Python UDF

  1. 代码调试好后,将python脚本添加为MaxCompute的Resource:
    太阳2 10

注意此处选择的MaxCompute project必须是已经申请开通python
udf的project。

  1. 注册python 函数:
    太阳2 11
  2. 在sql脚本中编辑MaxCompute sql试用python udf:
    太阳2 12

原文链接:

上述功能可以使用SELECT TRANSFORM来实现

SELECT TRANSFORM 介绍

此文中采用MaxCompute Studio作展示,首先,安装MaxCompute
Studio,导入测试MaxCompute项目,创建工程,建立一个新的MaxCompute脚本文件, 如下

太阳2 13

提交作业可以看到执行计划(全部展开后的视图):

太阳2 14

Select
transform允许sql用户指定在服务器上执行一句shell命令,将上游数据各字段用tab分隔,每条记录一行,逐行输入shell命令的stdin,并从stdout读取数据作为输出,送到下游。Shell命令的本质是调用Unix的一些utility,因此可以启动其他的脚本解释器。包括python,java,php,awk,ruby等。

该命令兼容Hive的Transform功能,可以参考Hive的文档。一些需要注意的点如下:

  1. Using
    子句指定的是要执行的命令,而非资源列表,这一点和大多数的MaxCompute
    SQL语法不一样,这么做是为了和hive的语法保持兼容。

  2. 输入从stdin传入,输出从stdout传出;

  3. 可以配置分隔符,默认使用 t 分隔列,用换行分隔行;

  4. 可以自定义reader/writer,但用内置的reader/writer会快很多

  5. 使用自定义的资源(脚本文件,数据文件等),可以使用 set
    odps.sql.session.resources=foo.sh,bar.txt;
    来指定。可以指定多个resource文件,用逗号隔开(因此不允许resource名字中包含逗号和分号)。此外我们还提供了resources子句,可以在using
    子句后面指定 resources ‘foo.sh’, ‘bar.txt’
    来指定资源,两种方式是等价的(参考“用odps跑测试”的例子);

6.
资源文件会被下载到执行指定命令的工作目录,可以使用文件接口打开./bar.txt文件。

目前odps select transform完全兼容了hive的语法、功能和行为,包括
input/output row format 以及
reader/writer。Hive上的脚本,大部分可以直接拿来运行,部分脚本只需要经过少许改动即可运行。另外我们很多功能都用比hive更高执行效率的语言
(C++) 重构,用以优化性能。

应用场景举例

理论上select transform能实现的功能udtf都能实现,但是select
transform比udtf要灵活得多。且select
transform不仅支持java和python,还支持shell,perl等其它脚本和工具。
且编写的过程要简单,特别适合adhoc功能的实现。举几个例子:

  1. 无中生有造数据

太阳2 15

或者使用python

太阳2 16

上面的语句造出一份有50行的数据表,值是从1到50;
测试时候的数据就可以方便造出来了。功能看似简单,但以前是odps的一个痛点,没有方便的办法造数据,就不方便测试以及初学者的学习和探索。当然这也可以通过udtf来实现,但是需要复杂的流程:进入ide->写udtf->打包->add
jar/python->create function->执行->drop function->drop
resource。

  1. awk 用户会很喜欢这个功能

太阳2 17

上面的语句仅仅是把value原样输出,但是熟悉awk的用户,从此过上了写awk脚本不写sql的日子

  1. 用odps跑测试

太阳2 18

或者

太阳2 19

这个例子是为了说明,很多java的utility可以直接拿来运行。java和python虽然有现成的udtf框架,但是用select
transform编写更简单,并且不需要额外依赖,也没有格式要求,甚至可以实现离线脚本拿来直接就用。

  1. 支持其他脚本语言

select transform (key, value) using “perl -e ‘while($input =
<STDIN>){print $input;}'” from src;

上面用的是perl。这其实不仅仅是语言支持的扩展,一些简单的功能,awk,
python, perl, shell
都支持直接在命令里面写脚本,不需要写脚本文件,上传资源等过程,开发过程更简单。另外,由于目前我们计算集群上没有php和ruby,所以这两种脚本不支持。

  1. 可以串联着用,使用 distribute by和 sort by对输入数据做预处理

太阳2 20

或者用map,reduce的关键字会让逻辑显得清楚一些

太阳2 21

理论上OpenMR的模型都可以映射到上面的计算过程。注意,使用map,reduce,select
transform这几个语法其实语义是一样的,用哪个关键字,哪种写法,不影响直接过程和结果。

性能

性能上,SELECT TRANSFORM 与UDTF
各有千秋。经过多种场景对比测试,数据量较小时,大多数场景下select
transform有优势,而数据量大时UDTF有优势。由于transform的开发更加简便,所以select
transform非常适合做adhoc的数据分析。

UDTF的优势:

  1. UDTF是有类型,而Transform的子进程基于stdin/stdout传输数据,所有数据都当做string处理,因此transform多了一步类型转换;
  2. Transform数据传输依赖于操作系统的管道,而目前管道的buffer仅有4KB,且不能设置,
    transform读/写 空/满 的pipe会导致进程被挂起;
  3. UDTF的常量参数可以不用传输,而Transform没办法利用这个优化。

SELECT TRANSFORM 的优势:

  1. 子进程和父进程是两个进程,而UDTF是单线程的,如果计算占比比较高,数据吞吐量比较小,可以利用服务器的多核特性
  2. 数据的传输通过更底层的系统调用来读写,效率比java高
  3. SELECT
    TRANSFORM支持的某些工具,如awk,是natvie代码实现的,和java相比理论上可能会有性能优势。

小结

MaxCompute基于ODPS2.0的SQL引擎,提供了SELECT
TRANSFORM功能,可以明显简化对脚本代码的引用,与此同时,也提高了性能!我们推荐您尽量使用SELECT
TRANSFORM。

标注

  • 注一,USING
    后面的字符串,在后台是直接起的子进程来调起命令,没有起shell,所以shell的某些语法,如输入输出重定向,管道等是不支持的。如果用户需要可以以
    shell 作为命令,真正的命令作为数据输入,参考“无中生有造数据”的例子;
  • 注二,JAVA 和 PYTHON 的实际路径,可以从JAVA_HOME 和 PYTHON_HOME
    环境变量中得到作业;

作者:隐林

本文为云栖社区原创内容,未经允许不得转载。返回搜狐,查看更多

责任编辑:

相关文章